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We study unlearning in the paramagnetic phase of neural network models. After many unlearning steps at
temperatureT, changes of synaptic interactions are expressed by the paramagnetic correlation function. Taking
the second order terms ofb5T21, we derive the evolution equation and find that the Hopfield model evolves
into the pseudo-inverse model in some parameter region. As a second initial condition, we study the Hopfield
model, which has varying pattern weights. In this case, unlearning works on the large weight patterns and
removes the monopoly of them.@S1063-651X~96!13110-X#

PACS number~s!: 87.10.1e, 05.90.1m, 75.10.Nr

I. INTRODUCTION

Recently, neural networks have been extensively studied
by using the analogy to spin models of statistical physics.
According to these studies, an associative memory can be
achieved by spin dynamics when interactions among them
are made according to the Hebb rule. For each spin interac-
tion Ji j which connects sitei and sitej , the Hebb rule tells us
the prescriptionJi j→Ji j1j ij j /N to learn a patternji , where
N is the system size. With this replacement, the fixed point
of spin dynamics is created in the configuration space and
the system remembers this pattern from an imperfect pattern.

The Hebb rule is local in the sense that the change ofJi j
is completely determined by the data on sitei and sitej of a
newly arising pattern. After learning P patterns
j i

m ,m51•••P, i51•••N, we obtain the spin model, that is,
the Hopfield model@1#, which is defined by

H52 1
2(
iÞ j

Ji j SiSj , ~1!

where

Ji j5
1

N (
m

j i
mj j

m , ~2!

and Si are Ising spin variables. We assumej i
m561 with

probability 1
2. According to the study by the replica method

@2#, this model really has a retrieval phase for smalla[P/N,
but it also has a spin glass phase with a rather high phase
transition point. This may imply that spin glass states domi-
nate the configuration space. In the context of neural net-
works, spin glass states and other states which are different
from learned patterns are called spurious states, which means
that they are different from learned patterns.

The Hopfield model can be viewed as a point in the in-
teraction space and it possibly has better models nearby. In
fact, several years ago, some biologists have suggested a
very interesting local algorithm calledunlearningwhich im-
proves the Hopfield model gradually@3–5#. The basic idea is
to remove spurious states from the spin configuration space

by unlearning them. They have also suggested that this pro-
cedure corresponds to REM sleep, which is widely observed
among mammals. However, we have no idea about the re-
sulting model, probably because it is quite difficult to study
the ensemble of spurious states.

In this paper, we introduce and study unlearning of para-
magnetic configurations, in which the system unlearns the
spin configurations generated by paramagnetic dynamics of
neural networks@6#. In Sec. II, we present the basic idea of
unlearning of paramagnetic configurations. In Sec. III, the
evolution equation is studied by using the high-temperature
expansion. In Sec. IV, we apply our formulation to the gen-
eralized Hopfield models. The problems that remain to be
studied are discussed in Sec. V.

II. UNLEARNING IN THE PARAMAGNETIC PHASE

Let us imagineSi
d are generated by paramagnetic Monte

Carlo dynamics with interactionsJ i j
d and temperatureT. Af-

ter a whole updating ofSi
d, the next interactions are defined

by the iterative equations given by

Ji j
d115~11m̄ !Ji j

d2 ēSi
dSj

d . ~3!

The initial interactionsJ i j
0 are assumed to be the Hopfield

interactions.m̄ and ē are positive constants, which will be
specified later.

According to statistical mechanics,Si
d obeys the

Maxwell-Boltzmann distribution defined by the energy func-
tion of thedth model. If spurious states have lower energies
than embedded patterns, they are expected to appear very
frequently in this dynamics. It is known that the spin glass
states become global minimum fora.0.05. Thus we expect
the similar unlearning effect in this scheme. Actually, we
have found some affirmative results of numerical simulations
in the previous paper.

Using Eq.~3!, the interactions afterd0 unlearning are for-
mally given by

Ji j
d1d05~11m̄ !d0Ji j

d2 ē (
d85d

d1d021

~11m̄ !d1d0212d8Si
d8Sj

d8 .
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In the smallm̄,ē limit and if d0→` with small fixedm[m̄d0
ande[ēd0, Eq. ~4! reduces to

Ji j
d1d05~11m!Ji j

d2e^SiSj&Jd ~5!

to the first order ofe andm, where^SiSj&Jd is a paramagnetic
correlation function of thedth model, which is defined by

^SiSj&Jd5(
$S%

SiSjexp~2bHd!/Z, ~6!

whereZ5($S%exp~2bHd! andb5T21. The summation($S%
is over spin configurations.Hd is the energy function of the
dth model. The upper bound ofē is given by the following
argument. Roughly speaking, each term in the sum in Eq.~4!
is nearly random61. Thus the average is of order 1/Ad0.
But actually, it should tend to the correlation function for
large d0. Therefore 1/d0!(^SiSj&Jd)

2 should be satisfied.
This gives the inequalityē!(^SiSj&Jd)

2 if we takee51. This
implies ē!b2J 0

2/N for small b, whereJ0 is a constant of
order 1.

III. EVOLUTION IN HIGH TEMPERATURE

Let us discuss the solution of Eq.~5! to the second order
of b, which gives the first nontrivial effects. In the following
argument, it is convenient to uset[ēd as a time variable.
Then the above equation becomes

Ji j ~ t1Dt !5~11uDt !Ji j ~ t !2Dt^SiSj&J~ t !

5~11uDt !Ji j ~ t !2DtFbJi j ~ t !
1b2( 8Jik~ t !Jk j~ t !G , ~7!

to the second order ofb, whereu[m̄/ ē andDt[ēd0. In the
site sum(8 in Eq. ~7!, the terms withk5 i or j are excluded.
The important observation on this equation is that, when the
Hopfield interactions are assumed forJi j (t) including ficti-
tious diagonal interactionsJii5(mj i

mj i
m/N5a, the pattern

correlation matrixCmn[( ij i
mj i

n/N appears if the site sum is
extended to all sites. In the following studies, it is convenient
to introduce the interaction matrix with fictitious diagonal
elementsJii (t), which will be defined as a natural extention
of Ji j (t). These diagonal elements are independent ofi for
the Hopfield model. We assume this for generalt by setting
Jii (t);Jd(t), whereJd(t) is thej average ofJii (t). Then we
reach the evolution equation given by

Ji j ~ t1Dt !5~11pDt !Ji j ~ t !2qDt( Jik~ t !Jk j~ t !, ~8!

where p[bd12b2Jd(t), q[b2, and bd5u2b. Equation
~8! can be regarded as off-diagonal parts of the evolution
equation for matrixJ(t). Thus it is natural to extend Eq.~8!
to i5 j , which define diagonal partsJii (t). In this way, we
get the evolution equation forJ(t). The evolution equation
with quadratic terms of interactions was suggested in differ-
ent algorithms@7–9#, yet the relation to paramagnetic spin
configurations has not been discussed clearly.

If p is a constant, we can easily obtain the solution of Eq.
~8!, which has the form given by

Ji j ~ t !5s( JikS 1

11rJ D
k j

,

5
s

N (
mn

j i
mS 1

11rC D mn

j j
n , ~9!

where J is an initial interaction matrix,s5exp(pt), and
r5(q/p)@exp(pt)21#. Although t dependence ofp is not so
strong, we can take it into account in the following way.
Using Eqs.~8! and ~9!, we obtain a set of differential equa-
tions for s and r given by

ds

dt
5ps,

~10!
dr

dt
5qs.

The initial conditions fors and r are 1 and 0, respectively,
which represent the Hopfield model. Whent is small or
large, we can use the limiting behavior ofJd , that is,Jd→sa
for r→0 andJd→as/r for r→`. Then, to the first order oft,
we obtain

s511bt1••• ,
~11!

r5b2t1••• ,

whereb5bd12ab2. This solution implies that the amplitude
of beginning interactions are mainly controlled byd. Whent
is large, we assumes andr become large for large enoughd.
Using Jd;as/r and assumings/r tends to a positive con-
stanta, we find the solution given by

s5c exp~b2at!,
~12!

r5c
1

a
exp~b2at!,

wherea5d/@b~122a!# andc is some positive constant. This
solution is valid whena.0, which impliesd.0 for a,0.5.
The singularity ata50.5 is the artifact of the second order
approximation. Solution~12! implies that the running model
tends to the pseudoinverse model@10# for t@(ab2)21. It was
shown by the replica method that the pseudoinverse model
has higher memory capacity and a lower spin glass transition
point than the Hopfield model@11#. Model ~9! was also stud-
ied by the replica method, showing larger capacity than the
Hopfield model@7#. Thus, even ford,0, paramagnetic un-
learning really improves the Hopfield model as long ass
does not become too small.

Unlearning of spurious states has been studied form̄50,
which corresponds tod521. In this situation, there is a nu-
merical study about the optimal number of unlearningDopt
which achieves the best model@5,8#. In our formulation, the
amplitude ofJi j (t) becomes very small for negatived and
the conditionē!^SiSj&Jd

2 will be violated eventually. Thus
we defineDopt as the number of Monte Carlo steps when
Ji j (t) becomes very close to zero. According to Eq.~10!, s
becomes very close to zero whent;ubu21 for negativeb,
which leads toDopt;1/(ubu ē) for paramagnetic unlearning.
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IV. APPLICATIONS TO THE GENERALIZED
HOPFIELD MODELS

For the Hopfield model, there are various versions, each
of which reflects the properties of patterns and the situation
of learning. How unlearning works for such generalized
Hopfield models is an interesting problem. In this section, we
first discuss the model with varying pattern weights, and then
give some comments on the model with correlated patterns.

For the Hopfield model with varying pattern weights, the
initial interactions are given by

Ji j5
1

N (
m

amj i
mj j

m , ~13!

wheream depends onm, for which we take exp~2gm/N! for
convenience. This model was studied with regard to a work-
ing memory@12#. Although there is no limit on the sum over
patterns, the number of patterns the model is expected to
remember isPe[N/g. In the following, we imagine that
Pe/N51/g is small enough and the system remembers about
Pe patterns. In this situation, unlearning is expected to work
not on spin glass states but onPe strongly memorized states
since they are located deeply in energy valleys. NoteJi j
;1/A2gN for iÞ j andJii51/g.

To the second order ofb of the evolution equation, the
very same argument as for the usual Hopfield model for-
mally gives the solution

Ji j ~ t !5
1

N (
mn

j i
mSA s

11rCAD mn

j j
n , ~14!

whereAmn5dmnam . The functionss and r obey Eqs.~10!
with Jd derived from Eq.~14!. For small t, the solution is
given by Eq.~11! with a replaced byg21. For larget, r is
expected to become large for large enoughd. Does this im-
ply that Eq. ~14! tends to the pseudoinverse model? We
should be careful about this point whenam varies. That is,
for some diagonal elements of~11rCA!mn, the matrix 1 can-
not be neglected becauseram with largem can be still very
small.

Let us assume thatr becomes much larger than 1 after
many unlearning steps. This will be true for large enoughd.
To see what Eq.~14! implies in such a situation, it is conve-
nient to divide a group of patterns into two groups by intro-
ducingm0 defined byram0

51 and assumeram.m0
!1. Then

every matrix is decomposed into four submatrices depending
on whether pattern indices are larger or smaller than
m0. Amn are decomposed intoA01A1 , whereA0 is a sub-
matrix made ofam<m0

and A1 made ofam.m0
. Similarly,

Cmn are decomposed into four parts:C0 for m,n<m0, C1
for m.m0 andn<m0, C 1

T for m<m0 andn.m0, andC2 for
m,n.m0. For m,n<m0, the matrix 1 can be neglected in
11rCA. In this way, we assume

~11rCA!;S P e

Q 11 f D , ~15!

whereP5rC0A0 , Q5rC1A0 , e5rC 1
TA1 , and f5rC2A1 .

The terms withe or f are proportional torA1. To the first
order of rA1, we obtain

A~11rCA!21;S A0P
21~11eQ! 2A0P

21e

2A1QP21 A1
D ,

5S r21C0
21~11eQ! 2C0

21C1
TA1

2A1C1C0
21 A1

D ,
~16!

where we have used the relationA0P
215r21C 0

21. Most
elements withA1 are very small because of the assumption
ram.m0

!1. On the other hand, the part withm,n<m0 is in-

dependent ofm sinceam,m0
disappears. This part grows ast

increases and dominates the interaction matrix eventually.
Thus, for larget, we obtain the approximated form given by

Ji j ~ t !;
1

N

s

r (
m,n<m0

j i
mC0

21mnj j
n , ~17!

which is the pseudoinverse model made of the firstm0 pat-
terns. Using Eq.~17!, we can determine thet dependence of
m0 for large t. Let s/r[a(t) andm0/N[a(t), then the ap-
proximated solutions fors and r are given by

s5c exp E p~ t !dt,

r;c
b2

p~ t !
exp E p~ t !dt, ~18!

where

p~ t ![bd12b2a~ t !a~ t ! ~19!

is assumed to depend ont weakly. Equation~18! yields
s/r5p(t)/b2, which gives the relation

a~ t !5
d

b@122a~ t !#
. ~20!

On the other hand, by definition ofa(t), we obtain

a~ t ![
1

g
ln@r ~ t !#,

;
1

g E p~ t !dt. ~21!

Integration after differentiating both sides gives

a2~ t !2a~ t !1
bd

g
~ t2t0!50, ~22!

where t0 is the time when the right hand side of Eq.~17!
starts to dominateJi j (t). For small a(t), we obtain
a(t);bd(t2t0)/g. In the original model, the number of
effectively memorized patterns is about 1/g for large g,
while it can be of order 1 for Eq.~17! sincea(t) can be of
order of 1 for t2t0;g/(bd). However, there is an upper
limit of t2t0 sincea(t) should not be too close to 0.5. Oth-
erwise,ba(t) becomes too large to use the high-temperature
expansion.
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The disappearance ofam<m0
in Eq. ~17! is a very inter-

esting phenomena and clearly reflects the unlearning of pat-
terns which are located deeply in energy valleys. That is,
with unlearning of paramagnetic configurations, the energies
of large weight patterns become higher than small weight
patterns do and these patterns make the pseudoinverse inter-
actions successively. Biologically, the system removes a few
patterns’ monopoly by unlearning them and releases the po-
tential capacity of other memorized patterns.

Another interesting generalization is the model with cor-
related patterns. It is well known that the original Hopfield
model does not work well to memorize correlated patterns.
In more general interactions, it is known that the solution to
this problem is given by the pseudoinverse model, which is
surely what paramagnetic unlearning brings into. Besides,
unlearning of low-energy states seems quite natural since
two correlated patterns are expected to create a deep energy
valley. Let us discuss the simplest model made of two cor-
related patternsj i

1 and j i
2 with ( ij i

1j i
2/N5m.0. By the

signal-noise analysis, we see that the Hopfield model does
not have eitherj i

1 or j i
2 as a fixed point of spin dynamics,

especially form close to 1. This means that the mixed energy
valley, which is different from embedded patterns, is created
by the Hebb learning of two correlated patterns. This natu-
rally leads to the idea of unlearning of this state. In our
formulation, the study of unlearning in such a situation is
reduced to the calculation of the inverse of~11rC!mn. A
short calculation gives the interactions proportional to
(j i

1j j
12mj i

1j j
22mj i

2j j
11j i

2j j
2)/N for large r . This inter-

action surely has no noise for either pattern 1 or pattern 2.
The inverse ofCmn in the large-r interactions implies that the
same thing is true for larger for many correlated patterns.

V. DISCUSSION

Let us give some concluding remarks. We have studied
paramagnetic unlearning of neural networks by using the
high-temperature expansion. Our study suggests that high-
temperature configurations already contain nontrivial infor-
mation about how to change the system to remove spurious
states. In studying the evolution equation expressed by the
correlation function, we have restricted ourselves toa which
is smaller and not close to 0.5. To discussa;0.5 or larger,
the higher order terms ofb should be studied. This will be an

interesting problem especially for the generalized Hopfield
model.

Having studied two generalized models, one may think of
unlearning in the models which have learned many corre-
lated and different-weight patterns. This will be interesting
since, for a set of patterns with different weights and differ-
ent correlations, one may ask which patterns the system will
tend to memorize. We can also think of the model which
evolves by alternate learning and unlearning. These situa-
tions will lead to quite complicated interactions, which will
not arise only by learning.

The concept of unlearning is quite attractive in the sense
that it describes the change of interactions using the infor-
mation generated by the system itself. Another interesting
suggestion of this nature is learning by selection using the
spin glass model@13#. In this suggestion, initial synaptic in-
teractions are assumed to be random and the system enforces
the preexisting low-energy states selectively by learning. Al-
though the system is influenced by input patterns in this case,
it will be interesting to study how the paramagnetic phase
works in this scheme.

The last subject we want to comment on is the application
to optimization problems. It is known that some optimization
problems can be formulated as a search for low-energy states
of spin models@14,15#. If low-energy states appear more
frequently than high-energy states in the paramagnetic con-
figurations, searching for these states will become easier af-
ter learning paramagnetic configurations. The very same ar-
gument as was given in the text implies that the interactional
changes by ‘‘paramagnetic learning’’ are also reduced to the
correlation function in high temperature. Thus we can use
the high-temperature expansion to find the new problem,
which is expected to be easier than the original problem.
This is an interesting possibility in the study of optimization
problems.

After finishing this study, I strongly feel that the noises,
which are generated either thermally or dynamically, can be
quite essential in information processing in neural networks.
Although, in the literature, temperature seems to be intro-
duced rather formally in neural networks, the idea of thermal
noise deserves to be studied in the very context of the func-
tions of neural networks. I hope that our study adds another
point of view to bridge statistical physics and neuroscience.
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