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Paramagnetic unlearning in neural network models
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We study unlearning in the paramagnetic phase of neural network models. After many unlearning steps at
temperaturd’, changes of synaptic interactions are expressed by the paramagnetic correlation function. Taking
the second order terms @&=T"2, we derive the evolution equation and find that the Hopfield model evolves
into the pseudo-inverse model in some parameter region. As a second initial condition, we study the Hopfield
model, which has varying pattern weights. In this case, unlearning works on the large weight patterns and
removes the monopoly of therf§1063-651X96)13110-X]

PACS numbsgs): 87.10+e, 05.90+m, 75.10.Nr

I. INTRODUCTION by unlearning them. They have also suggested that this pro-
Recently, neural networks have been extensively studie edure corresponds to REM sleep, which is widely observed

by using the analogy to spin models of statistical physics o 9 mammals. However, we have no idea about the re-
A)c/:cor di?l o thesethu dieg an associative memorp cyan b‘sulting model, probably because it is quite difficult to study
9 ' y fie ensemble of spurious states.

achieved by spin dynamics when interactions among them In this paper, we introduce and study unlearning of para-

are made according to the Hebb rule. For each spin Intera(f*hagnetic configurations, in which the system unlearns the

tion J;; which connects siteand sitej, the Hebb rule tells us spin configurations generated by paramagnetic dynamics of

the prescriptiond;; — J;; + £;§;/N to learn a patterd; , where Pl
X . ; . . ._neural network$6]. In Sec. Il, we present the basic idea of
N is the system size. With this replacement, the fixed po'npnlearning of paramagnetic configurations. In Sec. Ill, the

of spin dynamics is crea;ed in the conﬂguya‘uon space anavolution equation is studied by using the high-temperature
the system remembers this pattern from an imperfect pattern.

. . expansion. In Sec. 1V, we apply our formulation to the gen-
. The Hebb rule is I_ocal in the sense tha.‘.t the C_ha_ngﬂqjof eralized Hopfield models. The problems that remain to be
is completely determined by the data on sitend sitej of a

=~ ; studied are discussed in Sec. V.
newly arising pattern. After learningP patterns
&, u=1---P,i=1---N, we obtain the spin model, that is,
the Hopfield mode[1], which is defined by Il. UNLEARNING IN THE PARAMAGNETIC PHASE

Let us imagineS? are generated by paramagnetic Monte
H=-3> J;SS;, (1) carlo dynamics with interactions} and temperaturd@. Af-
') ter a whole updating OS?, the next interactions are defined

where by the iterative equations given by

JAF— (14 71) 39 —es9s? 3
Jif%% e 2) i T AERI eSS, ®

The initial interactions]?i are assumed to be the Hopfield
and S are Ising spin variables. We assurfif=+1 with  interactions.u and e are positive constants, which will be
probability 3. According to the study by the replica method specified later.

[2], this model really has a retrieval phase for snaa#iP/N, According to statistical mechanicsSid obeys the
but it also has a spin glass phase with a rather high phasdaxwell-Boltzmann distribution defined by the energy func-
transition point. This may imply that spin glass states domition of thedth model. If spurious states have lower energies
nate the configuration space. In the context of neural netthan embedded patterns, they are expected to appear very
works, spin glass states and other states which are differefriequently in this dynamics. It is known that the spin glass
from learned patterns are called spurious states, which meaggates become global minimum fat>0.05. Thus we expect
that they are different from learned patterns. the similar unlearning effect in this scheme. Actually, we
The Hopfield model can be viewed as a point in the in-have found some affirmative results of numerical simulations
teraction space and it possibly has better models nearby. in the previous paper.
fact, several years ago, some biologists have suggested aUsing Eq.(3), the interactions afted, unlearning are for-
very interesting local algorithm callagchlearningwhich im-  mally given by
proves the Hopfield model graduall$—5]. The basic idea is

to remove spurious states from the spin configuration space d+dyg—1
d+d —dnqd — — 1 d ~d’ ~d’
Iy o=l —e X (LTSS
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In the smallu, e limit and if dy—oc with small fixedu=pud,
and e=ed,, Eq. (4) reduces to

3= (14 1) 3 — (S0 (5)

to the first order ok andu, where(S;S;) ;a is a paramagnetic
correlation function of thelth model, which is defined by

<sisj>3d=% SiSiexp(— BHo)/Z, ®)
yvhereZ=_E{S}exp(—BH_d) and,(_5’=T‘1. The summetiori{s}
is over spin configurationdd is the energy function of the
dth model. The upper bound efis given by the following
argument. Roughly speaking, each term in the sum in(4&q.
is nearly random*1. Thus the average is of orderi,.

But actually, it should tend to the correlation function for

large dy. Therefore ]nl0<(<SiS)Jd)2 should be satisfied.
This gives the |nequallty<(<$S)Jd) if we takee=1. This
implies e<B2J3/N for small 3, whereJO is a constant of
order 1.

[Il. EVOLUTION IN HIGH TEMPERATURE

Let us discuss the solution of E¢p) to the second order
of B, which gives the first nontrivial effects. In the following
argument, it is convenient to usesed as a time variable.
Then the above equation becomes

+B22 I (D30 |, (7

to the second order g8, wheref=u/e andAt=ed,. In the
site sum2’ in Eq. (7), the terms wittk=i or j are excluded.
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If p is a constant, we can easily obtain the solution of Eq.
(8), which has the form given by

Jj (=52 Ji

1+rd k,’

&, €)

S 1
:_2 I
N‘o >'\1+rC

where J is an initial interaction matrixs=exp(pt), and
r=(q/p)[exp(pt) —1]. Althought dependence gf is not so
strong, we can take it into account in the following way.
Using Eqgs.(8) and(9), we obtain a set of differential equa-
tions fors andr given by

ds_

dt_ Ps

dr (10
aZQS.

The initial conditions fors andr are 1 and 0, respectively,
which represent the Hopfield model. Whenis small or
large, we can use the limiting behaviorgf, that is,Jq— s«
for r—0 andJy— as/r for r —o. Then, to the first order df
we obtain

s=1+bt+---,
11
r=p2%+--- a1

whereb= B8+ 2a2. This solution implies that the amplitude
of beginning interactions are mainly controlled ByWhent

is large, we assumgandr become large for large enough
Using J4~ as/r and assuming/r tends to a positive con-
stanta, we find the solution given by

s=c expB?at),
(12)
1
r=c exp( B?at),

The important observation on this equation is that, when the

Hopfield interactions are assumed fiy(t) including ficti-
tious diagonal interactiond;; ==  £f*§f/N=e, the pattern

wherea= 48[ B(1—2a)] andc is some positive constant. This
solution is valid whera>0, which impliesé6>0 for «<0.5.

correlation matrixC*’'=3;£¢¢; "IN appears if the site sumis The singularity ate=0.5 is the artifact of the second order
extended to all sites. In the following studies, it is convenient@approximation. Solutiori12) implies that the running model

to introduce the interaction matrix with fictitious diagonal tends to the pseudoinverse mofiE)] fort>(a,82) L1t was
elements);; (t), which will be defined as a natural extention shown by the replica method that the pseudoinverse model
of J;;(t). These diagonal elements are independerit fof has higher memory capacity and a lower spin glass transition
the Hopfield model. We assume this for gendrhy setting  point than the Hopfield mod¢l1]. Model (9) was also stud-

J;; (1)~ J4(t), wheredy(1) is the& average ofl; (t). Thenwe  ied by the replica method, showing larger capacity than the
reach the evolution equation given by Hopfield model[7]. Thus, even for§<0, paramagnetic un-
learning really improves the Hopfield model as longsas
does not become too small.

Unlearning of spurious states has been studiequfe,
which corresponds té=—1. In this situation, there is a nu-
where p=B5+25%J4(t), q=p°, and pé=6—p. Equation merical study about the optimal number of unlearnidig,

(8) can be regarded as off-diagonal parts of the evolutiorwhich achieves the best mod&,8]. In our formulation, the
equation for matrix(t). Thus it is natural to extend E¢8)  amplitude ofJ;;(t) becomes very small for negativeand

to i=j, which define diagonal part;(t). In this way, we the cond|t|one<(518>Jd will be violated eventually. Thus
get the evolution equation fa(t). The evolution equation we defineD, as the number of Monte Carlo steps when
with quadratic terms of interactions was suggested in differd;;(t) becomes very close to zero. According to EtQ), s
ent algorithmg[7-9], yet the relation to paramagnetic spin becomes very close to zero wher|b| ™ for negativeb,
configurations has not been discussed clearly. which leads taD o~ 1/(|b[€) for paramagnetic unlearning.

Jij(t+HAD)=(1+pAD)J;; () — ALY, Jy() (1), (8)
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IV. APPLICATIONS TO THE GENERALIZED
HOPFIELD MODELS A(1+rCA) 1~

P Y(1+eQ —A,P e
—AQP7! Ay ’
For the Hopfield model, there are various versions, each
of which reflects the properties of patterns and the situation r’Cy'(1+eQ —Cg'CiA;
of learning. How unlearning works for such generalized = —A.C,Co1 A '
. . . . . . 1“~1%~0 1
Hopfield models is an interesting problem. In this section, we
first discuss the model with varying pattern weights, and then (16)
give some comments on the model with correlated patterns.
For the Hopfield model with varying pattern weights, the W
initial interactions are given by

where we have used the relatigx,P 1=r"1C 1. Most

eIements withA; are very small because of the assumption
a,>,,<1.0n the other hand, the part withv=<g, is in-

dependent ofw smcea,KM0 disappears. This part grows s

increases and dominates the interaction matrix eventually.
Thus, for larget, we obtain the approximated form given by

1
3=y % a,Eter, (13)

wherea,, depends o, for which we take exp-gu/N) for
convenience. This model was studied with regard to a work-
ing memory[12]. Although there is no limit on the sum over
patterns, the number of patterns the model is expected to
remember isP,=N/g. In the following, we imagine that which is the pseudoinverse model made of the firgipat-
P./N=1/g is small enough and the system remembers abouerns. Using Eq(17), we can determine thiedependence of
P, patterns. In this situation, unlearning is expected to worku, for larget. Let s/r=a(t) and uy/N=«(t), then the ap-
not on spin glass states but &} strongly memorized states proximated solutions fos andr are given by
since they are located deeply in energy valleys. Njje
~1/y2gN for i#j andJ;;=1/g. _ _ s=c expf p(t)dt,

To the second order g8 of the evolution equation, the
very same argument as for the usual Hopfield model for-

Gih~== X Ecyte, (17)

Nr My VS o

mally gives the solution J
r~ ex t)dt, 18
. p(t) p| p(t) (19
Jj(t)= E s*‘( T A) &, (19 where
— 2
where A*"=6*"a , . The functionss andr obey Eqs.(10) p()=po+2p%a(t)a(t) (19

with Jy4 derived from Eq.(14). For smallt, the solution is
given by Eq.(11) with a replaced byg ™. For larget, r is
expected to become large for large enowtboes this im-

is assumed to depend dnweakly. Equation(18) yields
s/r=p(t)/ 8%, which gives the relation

ply that Eqg. (14) tends to the pseudoinverse model? We 5
should be careful about this point whey varies. That is, a(t)= 1=2a(D) (20
for some diagonal elements @f+rCA)*”, the matrix 1 can- Al a(t)]

not ll)le neglected becausa, with large u can be still very On the other hand, by definition af(t), we obtain
sma

Let us assume that becomes much larger than 1 after
many unlearning steps. This will be true for large enodgh a(t)= In[r(t)]
To see what Eq(14) implies in such a situation, it is conve-
nient to divide a group of patterns into two groups by intro- 1
ducing uq defined byra%: 1 and assumea,,~, <1. Then ~ a j p(t)dt. (21)

every matrix is decomposed into four submatrices depending
on whether pattern indices are larger or smaller thal
Mo. AF” are decomposed intdy+A;, whereA, is a sub-
matrix made ofaﬂgﬂo and A; made ofaﬂ>ﬂ Similarly, , B4
C*" are decomposed into four partsC, for wu,r<ug, C; a’(t)—a(t)+ 9 (t—1to)=0, (22)

for u>pu and v<u,, C] for u<puq and v>pu,, andC, for

M V>po. FOr pv<puo, the matrix 1 can be neglected in wheret, is the time when the right hand side of E4.7)
1+rCA. In this way, we assume starts to dominateJ;;(t). For small a(t), we obtain
a(t)~B8(t—ty)/g. In the original model, the number of
effectively memorized patterns is aboutglfor large g,
while it can be of order 1 for Eq17) sincea(t) can be of
order of 1 fort—ty~g/(B5). However, there is an upper
where P=rCyA,, Q=rC,A,, e=rCIA,, andf=rC,A;. limit of t—tg sincea(t) should not be too close to 0.5. Oth-
The terms withe or f are proportional taoA;. To the first  erwise,Ba(t) becomes too large to use the high-temperature
order ofrA;, we obtain expansion.

r]ntegration after differentiating both sides gives

P e

Q 1+f)’ (15

(1+rCA)~(
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The disappearance of,—, in Eq. (17) is a very inter-  interesting problem especially for the generalized Hopfield

esting phenomena and clearly reflects the unlearning of patnodel.
terns which are located deeply in energy valleys. That is, Having studied two generalized models, one may think of
with unlearning of paramagnetic configurations, the energiegnlearning in the models which have learned many corre-
of large weight patterns become higher than small weightated and different-weight patterns. This will be interesting
patterns do and these patterns make the pseudoinverse inteince, for a set of patterns with different weights and differ-
actions successively. Biologically, the system removes a fewent correlations, one may ask which patterns the system wiill
patterns’ monopoly by unlearning them and releases the paend to memorize. We can also think of the model which
tential capacity of other memorized patterns. evolves by alternate learning and unlearning. These situa-
Another interesting generalization is the model with cor-tions will lead to quite complicated interactions, which will
related patterns. It is well known that the original Hopfield not arise only by learning.
model does not work well to memorize correlated patterns. The concept of unlearning is quite attractive in the sense
In more general interactions, it is known that the solution o4t it describes the change of interactions using the infor-
this problem is given by the pseudoinverse model, which i§yaiion generated by the system itself. Another interesting
surely v_vhat paramagnetic unlearning brmg; Into. BeS"qesawggestion of this nature is learning by selection using the
unlearning of low-energy states seems quite natural sincgin glass modél13]. In this suggestion, initial synaptic in-

two correlated patterns are gxpected o create a deep enerﬁ&actions are assumed to be random and the system enforces
valley. Let us discuss the simplest model made of two cor-

related patterng! and £2 with ,£1¢2/N=m>0. By the the preexisting low-energy states selectively by learning. Al-

signal-noise analysis, we see that the Hopfield model doe_@oggh th(_e SyStem Is influenced by input patterns in _this case,
not have eithe or £2 as a fixed point of spin dynamics, it will be interesting to study how the paramagnetic phase

especially form close to 1. This means that the mixed energyVOrks in this scheme.

valley, which is different from embedded patterns, is created 1 he last subject we want to comment on is the application
by the Hebb learning of two correlated patterns. This natul0 Optimization problems. It is known that some optimization
rally leads to the idea of unlearning of this state. In Ourproblt_ams can be formulated as a search for low-energy states
formulation, the study of unlearning in such a situation isOf SPin models[14,15. If low-energy states appear more
reduced to the calculation of the inverse @tHrC)~. A f_reque_ntly than hlg_h-energy states in th(_e paramagnetic con-
short calculation gives the interactions proportional toﬁguranons, searching fo_r these_ states will become easier af-
(filfjl—méiléjz—mfizfjl+ fizsz)/N for larger. This inter-  ter learning paramagnetic configurations. The very same ar-
action surely has no noise for either pattern 1 or pattern 29ument as was given in the text implies that the interactional
The inverse oC*" in the larger interactions implies that the C€hanges by “paramagnetic learning” are also reduced to the

same thing is true for large for many correlated patterns. ~ correlation function in high temperature. Thus we can use
the high-temperature expansion to find the new problem,

which is expected to be easier than the original problem.
This is an interesting possibility in the study of optimization
Let us give some concluding remarks. We have studiegbroblems.

paramagnetic unlearning of neural networks by using the After finishing this study, | strongly feel that the noises,

high-temperature expansion. Our study suggests that highwhich are generated either thermally or dynamically, can be
temperature configurations already contain nontrivial infor-quite essential in information processing in neural networks.
mation about how to change the system to remove spuriouslthough, in the literature, temperature seems to be intro-
states. In studying the evolution equation expressed by théuced rather formally in neural networks, the idea of thermal
correlation function, we have restricted ourselvestwhich  noise deserves to be studied in the very context of the func-
is smaller and not close to 0.5. To discuss0.5 or larger, tions of neural networks. | hope that our study adds another
the higher order terms @& should be studied. This will be an point of view to bridge statistical physics and neuroscience.

V. DISCUSSION

[1] J. J. Hopfield, Proc. Natl. Acad. Sci. USR9, 2554 (1982. [9] A. Y. Plakhov and S. A. Semenov, J. Phys. Franeg 53
[2] D. J. Amit, H. Gutreund, and H. Sompolinsky, Ann. Phyg3 (1994,

30(19879). [10] L. Personnaz, |. Guyon, and G. Deyfus, J. PH{ari9 Lett.
[3] F. Crick and G. Mitchison, Naturg04, 111(1983. 46, L-359 (1985.

[4] iég.(llﬂgosp:;ield, D. I. Feinstein, and R. G. Palmer, NatBdd, [11] I. Kanter and H. Sompolinsky, Phys. Rev.3%, 380 (1987.
sy e LB loffe. R Kin. and M. Vaas. Phvsica [12] M. Mézard, J. P. Nadal, and G. Toulouse, J. Plilfsance 47,
LoV ,L.B. » R. Kin, : PNy 1457(1986.

163, 386(1990.
[13] G. Toulouse, S. Dehaene, and J. P. Changeux, Proc. Natl.
6] K. Nokura, J. Phys. &9, 3871(1996. .
[6] y (1999 Acad. Sci. USA 83, 1695(1986.

[7] V. Dotsenko, N. D. Yarunin, and E. A. Dorotheyev, J. Phys. A ; ' ) )
24, 2419(1991. [14] M. Mezard, G. Parisi, and M. Virasor&pin Glass Theory and
’ Beyond(World Scientific, Singapore, 1987

[8] S. Wimbauer, N. Klemmer, and J. L. van Hemmen, Neural ' ”
Networks7, 261 (1994 [15] J. J. Hopfield and D. W. Tank, Biol. Cyberb2, 141 (1985.



